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ABSTRACT 
This  report  introduces  an  optimization  approach  to finding the  best way to  orient 
three  reaction wheels on  an  orbiting  spacecraft. For this  purpose, a quadratic cost 
function is constructed based on  torque,  momentum  storage,  and power requirements. 
Since momentum  management is such an  important issue for an  orbiting  spacecraft, 
a simple  momentum  management  strategy is also  parametrized  and  included as part 
of the overall optimization process. The  main  consideration  in  this  study is to  find an 
orientation which minimizes  mass and power of the required  reaction wheels, while 
allowing a specified maximum  amount of time between momentum  dumps for science 
acquisition.  Several  case  studies  are given to  demonstrate convergence of the  method, 
including an  application  to  the  NASA/JPL’s  future  Europa  orbiter mission. This is 
a preliminary  study which considers the  orientation of 3 reaction wheels. A future 
report will consider the  more complex  case of orienting 4 reaction wheels. 
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1 INTRODUCTION 

Reaction wheels are often used as actuators for controlling  spacecraft attitude.  This  report 
takes  an  optimization  approach  to finding the  best way to orient  three  reaction wheels on 
an  orbiting  spacecraft. For this  purpose, a quadratic cost  function  is  constructed  based on 
torque,  momentum  storage,  and power requirements. Since momentum  management is such 
an  important issue for an  orbiting  spacecraft, a simple momentum  management  strategy 
is also parametrized  and included as  part of the overall optimization process. The main 
consideration  in  this  stud is to find an  orientation which minimizes  mass and power of 
the  required  reaction wheels, while allowing a specified amount of time between momentum 
dumps. 

The  approach  taken in this  paper is to  parametrize each reaction wheel with  its own unit 
vector direction.  This  approach is the most  general  possible, and avoids  imposing  a-priori 
restrictions  on wheel geometry. This  is in contrast  to earlier  results which impose a pyramid 
structure  to simplify the  problem. For example,  the  approach in  Fleming  and  Ramos [5] 
optimizes over the single cant angle  associated  with a 4-wheel square  pyramid  configuration, 
while the  approach in  Hablani [8] optimizes over the two angles  associated  with a 4-wheel 
rectangular  pyramid.  Although  the present  analysis  considers fewer wheels (3 versus 4)  there 
are a full 6 degrees-of-freedom involved in  the  optimization  problem,  compared  to only 1 
DOF in  [5], and 2 DOF in [8]. In  principle, the  extra degrees of freedom can  lead to  better 
performance. Of course, this  added  performance  must  be  traded  against a potentially  more 
complex implementation. Along  these same lines, the  optimization of 8 DOF associated  with 
a 4-wheel configuration will be  considered  in a future  paper. 

The  target  application for this work is the  Europa  Orbiter.  The  Europa  Orbiter is part of 
the NASA’s Outer  Planets/Solar  Probe  Project,  and is a mission to send a spacecraft to  orbit 
Europa  (Jupiter’s  fourth  largest  .moon) in  order to  to measure  the thickness of the  surface 
ice, and  to  detect  an  underlying liquid  ocean if it exists. 

The  Europa  Orbiter  has  tight mass and power limitations. To help  reduce wheel mass 
it is assumed that  the wheels are used with  their full  bipolar  capacity,  i.e., that zero-rate 
crossings are  acceptable over the course of each orbit. However, this  same  strategy  may  not 
be  desirable for other missions with  larger  mass  and power budgets,  and/or which may  be 
sensitive to  the  additional  disturbances induced at the zero-crossings. 

Mathematically, a QR factorization of the  orientation  matrix is used to  decompose the 
optimization  problem such that  rotation  matrix Q and skewness matrix R of the wheel frame 
can  be  optimized  separately.  Rotation is optimized  analytically  (and  globally)  using a new 
result given in  Appendix A, while the skewness is optimized  using a Sequential  Quadratic 
Programming  (SQP)  approach. Several case studies  are given to  demonstrate  the convergence 
of method,  including  an  application  to  the  NASA/JPL’s emerging Europa  orbiter mission. 

The  report is organized as follows. Background  on the reaction wheel orientation prob- 
lem  is given in Section 2, with  momentum,  torque  and power requirements  discussed  in 
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Section 3. In Section 4, a cost  function is defined for optimization  purposes which incorpo- 
rates  requirement-relevant  weighting  functions. An algorithm for optimization of the cost is 
given in  Section 5, based on a QR factorization of the  orientation  matrix.  The convergence 
of the  algorithm is demonstrated by numerical  example for three case studies in  Section 6. 
Conclusions are  postponed  until Section 7. 

Appendices  A  and B are included to give details  behind  the  Steps 1 and 3, respectively, 
of the  optimization  procedure.  Appendix C is included for pedagogical  reasons,  providing a 
simplified proof for a special case of the result given in  Appendix B. 

2 BACKGROUND 

Let the vector x ,  E R3 denote a physical quantity (e.g., torque,  momentum,  etc.) such that 
the  i’th  element of x ,  is associated  with  the  i’th  reaction wheel, i = 1 , 2 , 3 .  Vectors defined 
in this  manner will be  said  to  be  in wheel coordinates. The  mapping from wheel coordinates 
to  body  coordinates  is given by the expression, 

A = [al ,  a2, a31 (2.2) 
where A E R3x3 denotes a 3 x 3 wheel orientation matrix (with columns ai, i = 1 , 2 , 3 ) ,  
and xb is the  corresponding vector quantity in  spacecraft  body  coordinates.  Physically, the 
i’th column of the A matrix  denotes  the  orientation of the  i’th  reaction wheel expressed as 
a unit vector  in body  coordinates. Hence the columns of the A matrix  are  not  arbitrary,  but 
are each constrained  to have unit  norm,  i.e., 

Note, however, that in the present treatment,  the  columns of A are  not  required to  be 
orthogonal.  This  permits  the  reaction wheels to  attain (possibly) skewed configurations. 
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3 REQUIREMENTS 

Reaction wheel requirements  are  most  simply  stated in terms of an idealized set of three 
reaction wheels which are assumed  be  oriented  along each of the  body axes. For  example, a 
simulation  can  be  run which assumes  (artificially) that  the reaction wheels are  oriented  along 
the  body axes, to numerically  generate the wheel torque  and  momentum  storage  requirements. 
For notational  purposes,  all  quantities associated  with  such an idealized  reaction wheel frame 
will be  denoted  with a star ’*’. 

This idealized  reaction wheel frame is not necessarily optimal for any  criteria. However, 
requirements specified for wheels in the  body  frame  are easily calculated  and visualized, and 
they  can  then  be  mapped,  as a separate  step,  into  any  other  candidate  set of reaction wheel 
coordinates  being considered as part of the  optimization process. 

The baseline  scenario  (motivated by the  Europa  orbiter mission) will involve an  orbiting 
spacecraft which accumulates  momentum  in a nearly  repetitive  fashion  due to periodic  orbital 
dynamics  and  attitude histories. For example,  in  the case of the  Europa  orbiter,  the  main 
attitude modes  are for nadir  pointing  and  inertially  held  earth  pointing.  Because  mass is a 
critical  factor  in  the  Europa  design,  the  reaction wheels will be  operated in a bipolar  fashion, 
allowing for zero-rate crossings and  taking  advantage of their full momentum excursion. 

3.1 Momentum Requirements 

At  some starting  time t = 0, the spacecraft momentum is assumed to be  brought  (by  active 
management)  to a starting  momentum “bias” level denoted as b* (Nms) in idealized  reaction 
wheel coordinates.  The idealized  reaction wheels then  start  accumulating  momentum over 
the  orbit  with  both  periodic  and secular  components to give a total  stored  momentum at 
time t of h*(t). It will be convenient to define the  momentum  accumulated in ezcess of b* as 
Ah*(t), so that  the  total  stored  momentum  can  be  written  as, 

h*(t) = V + Ah*(t) ( 3 4  

The  accumulation of momentum continues until some specified time T (generally a fixed 
multiple  or  fraction of the  orbital  period) at which time  the  stored  momentum is brought 
back again by active  management to  its  starting bias level of b*. The process then  repeats 
in this  fashion, defining a nominal  momentum  management  strategy over the course of the 
mission. 

It will be convenient to  map  the  momentum bias b* into wheel coordinates  to give the 
vector b i.e., 

b = A-’b* (3.2) 

Consider a momentum  storage vector h*(t) E R3 at time t in body  coordinates which must 
be  attainable using the designed wheel orientation.  The  momentum vector can  be  similarly 
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mapped  into wheel coordinates as, 

h,(t) = A-'h*(t) (3.3) 

It is assumed that all wheels are  identical, each with a maximum  momentum  storage  capacity 
of f p  (Nms).  Then  conditions which ensure that no wheel is exceeding its  maximum  storage 
capacity at time t are given by, 

where, 

(3.5) 

Note that using (3.1), the t = 0 case  can  be treated  separately,  and (3.4) can  be broken into 
the two conditions, 

Constraints (3.6) and (3.7) are  functions of b and A and specify the basic momentum 
requirements  in wheel coordinates. 

3.2 Torque  Requirements 

The  torque  required in body  coordinates  during  this  period of time  is  denoted as the  time- 
varying  torque vector ~ " ( t )  E R3. At each time,  the  torque vector ~ * ( t )  must  be  attainable 
using the designed wheel orientation.  The  torque vector  can  be mapped  into wheel coordi- 
nates as, 

~ , ( t )  = A - l ~ * ( t )  (3.8) 

where ~ , ( t )  E R3 denotes  the  torque vector  in wheel coordinates. It is assumed that all 
wheels are  identical, each with  maximum  torque  capability of f y  (Nm).  Then  the  condition 
which ensures that no wheel is exceeding its maximum  torque  capacity at time t is given by, 

Constraint (3.9) is a function of A and specifies the basic torque  requirements in wheel 
coordinates. 
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3.3 Power  Requirements 

Let the  total power expended  due  to  reaction wheels at time t associated  with a specific 
wheel configuration  be  denoted by P(t ) .  The power dissipated P(t )  will be  assumed to be 
approximated by the  model Pl(t) defined as, 

(3.10) 

where the wheel speed  vector w ( t )  = [wl ( t ) ,  w2(t), w3(t)lT has  components wi(t) which cor- 
respond to  the speed of the  i’th wheel, and 1 1  * I l l  denotes  the  standard L1 vector norm, 

(3.11) 

The  constant po in (3.10)  accounts for power loss in the electronics and  other fixed dissipative 
effects. The wheel rate  term w ( t )  captures long term  dissipation effects associated  with 
countering  frictional  torques. The value for o is best  obtained by fitting  empirical data. 
The  angular  acceleration w is intentionally  omitted from this  model since it is not a major 
contributor  to  long-term power dissipation issues. However, it  is  important for calculating 
peak-power requirements  (e.g.,  during  maneuvers)  and  should  be checked against  the final 
design. 

For optimization  purposes,  the PI power model  (3.10) will be replaced by the P 2  model 
given below, 

P2(t) = P o  + QIIW( t ) l l 2  (3.12) 
where 1 1  . 112 denotes  the  standard L2 (Euclidean)  vector  norm, 

(3.13) 

The P 2  model  (3.12)  only  approximates  the Pl model, but  has  the  advantage of leading to  a 
more  tractable  optimization problem. The L1 norm  can  be  bounded  on  either  side by the L2 

norm as [7], 
Ilw(t)112 L I I N l l l  I d 5 .  Ilw(t>112 (3.14) 

Hence, the  minimization of P 2  power indirectly  acts  to minimize PI power to  within a factor 
of a. Numerical  results  indicate that  this  approximate  approach  can  be very effective. 

I t  is known that  the wheel speed is proportional  to  the wheel momentum,  i.e., 

I,w(t) = h,(t) = A-’h*(t) (3.15) 

where I ,  (Kg m2) is a scalar  value for the  individual wheel inertia  (assumed to  be  the  same 
for all wheels). Using (3.15),  the P 2  power model  (3.12) can  be  rewritten  as, 

(3.16) 
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The  condition for power P2(t) to be less than some  desired specified value Pd is then given 

(3.17) 

where p = Pd - po.  As done  for  the  momentum,  the t = 0 case  can  be broken out  separately 
to give the two constraints, 

p I ,  
l l W 2  L - , for t = 0 (3.18) 

0 

(3.19) 

Constraints (3.18) and (3.19) are  functions of b and A and specify the basic power require- 
ments. 

3.4 Discussion 

A feasible  design of b and A is defined as one which meets  the  momentum  storage  requirements 
(3.6)(3.7), torque  requirements (3.9), and power requirements (3.18)(3.19). The present 
approach will be  to optimize a certain cost  function which tends to drive b and A towards a 
feasible  design. The cost  function  is discussed in the  next section. 

As one  practical use of the optimization  tool,  the  mass  and/or power of the specified 
wheels can  be  systematically  reduced  until a feasible solution is no  longer obtained.  This 
establishes a bound on the  smallest  set of wheels which are  capable of doing the  job,  and is 
useful for sizing and  understanding wheel requirements. 
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4 COST FUNCTION 

The  optimization problem will focus on a specific discrete  set of times t k ,  k = 1, ..., n. At 
each time t k ,  let  the desired torque  be given as ~ * ( k )  and  the excess accumulated  momentum 
be given as Ah*(lc). Here, the t dependence  has been replaced by k for notational simplicity, 
since the  set of constraint  times is now finite. 

The goal is to optimize a cost  function C(b, A )  over the choice of both  the  initial  bias 
momentum b and  the  reaction wheel orientation A ,  i.e., 

min C(b, A )  
b,A 

The cost  function is taken to be  the  sum of three  components: 

where  each  component is defined below. 

Momentum Cost Function 

Torque Cost Function 

Power Cost Function 

The cost  function (4.2) is a weighted sum of L2 norms  (i.e,. weighted least  squares  criteria) 
where the weightings are chosen to normalize the  importance of each term  according  to  their 
specified requirements. For example,  the & weighting associated  with CM cost  in (4.3) is 
motivated by the need to satisfy  the  momentum  storage  requirements given in (3.6)(3.7). 
Similarly the scalings for CT and Cp above are  motivated by the need to satisfy the  torque 
requirements (3.9), and power requirements (3.18)(3.19), respectively. The  advantage of these 
scalings is that  they  transform  the cost into dimensionless units, which acts  to drive  each 
of the  quantities  to  satisfy  their desired  constraints.  This overcomes the  usual difficulty of 
scaling  costs  in  problems  with  multiple  objectives. 
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Numerical values for 0, y, a,p, I, are needed to properly scale the  optimization  problem. 
In  practice,  these  parameters can  be chosen based on a nominal  reaction wheel design. The use 
of the L2 norm  here is largely  motivated by mathematical convenience to lead to a reasonably 
tractable  solution,  and is not  the  same  as enforcing strict  satisfaction of constraints using 
a weighted L,  norm.  The possibility of L, norm  optimization  is  left as a topic for future 
investigation. 

The choice of times t k  at which to enforce the  constraints is left up  to  the designer. In 
practice,  these  constraints  can  be specified in  several ways, 

1. by discretizing  time over a grid,  and specifying momentum  and  torque  constraints  (in 
the idealized star frame)  based  on  an  actual  simulation of the  spacecraft  in  orbit 

2. by choosing times of maximum  excursions of the  momentum  and  torque  (in  the idealized 
star  frame), as generated by a simulation of the  spacecraft in orbit 

3. by not  interpreting t k  as time directly, but by using IC as an  index  to define a set of 
linear  constraints forming a simplex which overbounds the region  (in the idealized star 
frame)  containing  all  simulated  momentum  and  torque values. 

4. As a special  case of the  last  item, where  one uses the eight  corners of a box  aligned 
with  the  body  axes  to specify the  constraints  associated  with  the idealized star  frame. 

Any one of these choices can  be used with  the  optimization  approach  presented subse- 
quently. For simplicity, the  last choice will be used for the final implementation.  Similar 
formulations  making use of torque boxes and  momentum cylinders have appeared  in  the 
literature [4] [8]. 
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5 OPTIMIZATION PROCEDURE 

5.1 Parametrization of Orientation Matrix 

It will be  convenient for optimization  purposes to represent the  matrix A in terms of its QR 
factors  (cf., [7]), i.e., 

A = Q R  (5.1) 

where Q E R3x3 is an  orthogonal  matrix  (i.e., QQT = QTQ = I )  and R is  an  upper  triangular 
matrix.  Intuitively,  the R matrix represents the skewness of the wheel coordinate  frame,  and 
the Q matrix  represents  any  rotations  and/or reflections. 

By the  orthogonality of Q the  unit  norm  constraints  (2.3) on the columns of A become 
unit  norm  constraints on the columns of R. Hence, R is upper  triangular  with  unit  norm 
columns. Accordingly, it will be  parametrized as follows, 

l a  C 

- a 2 ) +  b ( l  - c 2 ) i  1 (5.2) 
(1 - b2)?(1  - c2)i  

It  can  be verified that  the columns of R are  unit  norm by construction. Specifically, the 
second  column of R parametrizes all unit vectors  in R2 since with  the  change of variable 
a = sin($) it corresponds to  the polar  representation x = sin($), y = cos($) of the  unit 
circle.  Similarly,  the last column of R spans  all  unit vectors  in R3 since with  the change of 
variables c = cos(&), b = cos(&),  it corresponds to  the spherical  coordinate  representation 
x = cos(&), y = cos(02) cos(O1) and x = cos(02) cos(O1)  of the  unit  sphere. 

In  order to  prevent the  square-root  terms in R from  becoming  imaginary, it will be 
convenient to impose  the following linear  constraints, 

Without loss of generality, the  square  roots in the definition of R (5.2)  can always  be taken 
as positive. To prove this  assertion, assume that some square  root  terms  are  not  positive  in  an 
arbitrary  matrix R" of the form (5.2). Because individual wheel characteristics  are  symmetric 
with  respect to polarity,  any  column of R" can  be  multiplied by -1 without  changing  the 
value of the cost function. Assume that  this is done to make the  diagonals of R" all positive, 
calling the  resulting  matrix R". Since the  diagonal  elements of R" are  positive,  they  can  be 
realized by interpreting  their  square-roots  as positive (as  desired). The remaining off-diagonal 
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elements of R" can  be  accommodated  within  the  positive  square-root  convention by choosing 
signs of a,  b, c appropriately  within  the  linear  constraints (5.3)). Hence, an  arbitrary R" can 
always be  written  as  an equivalent R" in the form of (5.2) with a,  b, c satisfying (5.3) when 
the  square-roots  taken  as positive. 

In  all  future reference, the  notation a,  b, c in the expression for R above will be  dropped 
and replaced by the  more  compact  parameter vector notation r where, 

5.2 Three Wheel Optimization  Algorithm 

Using the QR factorization of A ,  the cost  function (4.2)-(4.5) can  be  rewritten as, 

where, 
1 1  a2 

subject  to  Q  orthogonal,  and R upper  triangular  with  unit  norm  columns. 

The basic  approach  to minimizing C(b, R,  Q) is outlined  in  the following sequence of steps. 

Step 0: Initialize 

Q = I  

Step 1: Optimize over b,R 

subject  to R upper  triangular  with  unit  norm columns. 

Step 2: 

Calculate  the  bias  in  body  frame @ 
h h " 

b* = QRb 

Step 3: Optimize over Q 
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6 = argmin C(B- 1 Q T^* b ,R ,Q)  
Q 

(5.10) 

subject to Q being an  orthogonal  matrix  i.e., QTQ = I 
Step 4: Repeat 

Repeat  Steps 1 to 3 until convergence is obtained. 

5.3 Discussion 

In  Step 1, the  optimization is performed  using  Sequential Quadratic  Programming  (SQP), 
and is  detailed  in  Appendix A. It is worth  noting that  Step 1 is equivalent to, 

b*, = argmin b',R C(R"QTb*, R,Q) (5.11) 

where it is  emphasized that  this  optimization  is equivalently  taken over the  optimal bias mo- 
mentum  in body frame coordinates b*. This  fact is important for conceptual  reasons  discussed 
below. However, for the  actual numerical optimization,  it is more  convenient to use the bias 
momentum b in  reaction wheel coordinates  since it is b and  not b' that  appears linearly  inside 
the various  norm terms of C. 

In  Step 2, the calculation of the  momentum bias  in body  frame is made for  explicit use 
in the expression  (5.10) which  keeps it invariant  during  optimization of Q in Step 3. 

In  Step 3, the optimization over Q is performed  using  a  globally optimal  analytical  solution 
derived  in Appendix B. 

Together,  the  optimization in  (5.11) and (5.10)  (equivalently, Steps 1 and 3) constitute 
alternating  minimizations between the two independent parameter  sets { F ,  R} and {Q}. 
This relaxation type  approach  ensures that  the  algorithm gives a sequence of solutions  with  a 
monotonically  decreasing  cost. Since the cost is bounded below (by  zero),  the cost converges. 
Hence the  algorithm is convergent  in the sense of the cost. 

Although  the cost converges, the converged solution  is  not  necessarily  the  globally  optimal 
solution to  the original  problem,  nor  is it  (in general) even the locally optimal  solution which 
would be obtained by setting  the cost  gradient  to  zero.  Rather,  the  main  motivation for 
this  approach is to  take  advantage of a new result  in Appendix B which provides a closed- 
form analytical  solution  to  the subproblem of optimizing over Q. Empirically, this  tends 
to stabilize the overall  approach  and  lead to globally useful solutions. If local optimality is 
desired, the converged solution  can  be  further  iterated  using  a  gradient  algorithm.  While 
potentially useful, the  additional  gradient  iteration was not found  necessary  in the numerical 
examples studied. 
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6 NUMERICAL RESULTS 

Three case studies  are given in this section to  demonstrate  the use of the  algorithm  in Sec- 
tion 5.2 for optimizing  reaction wheel orientations.  The  three case studies  correspond to 
an  intentional  elongation of the  momentum  and  torque  requirement boxes in the x direc- 
tion  (Case l), the y direction  (Case  2),  and  the z direction  (Case 3). Case 2 is  based  on 
requirements for the  Europa  orbiter. 

6.1 Nominal Wheel Characteristics 

A nominal  set of three  identical  reaction wheels is chosen with  characteristics given below. 
These  numbers  are  consistent  with a recent Europa mission concept. 

Individual  wheel i n e r t i a  
Iw=.0509305 (Kg-m-2) 
Max indiv idua l  wheel momentum storage  capaci ty  
beta=8 (Nms) 
Max s ing le  wheel to rque   capabi l i ty  
gamma=. 02 (Nm) 
Power d i s s i p a t i o n   s c a l e   f a c t o r  
alpha=. 025 watt/ (rad/sec) 

6.2 Initial Configuration 

INITIAL DESIGN 
RWA Alignment Matrix: AhatO 

1 0 0 
0 1 0 
0 0 1 

Skewness Matr ix :   mat0  
1 0 0 
0 1 0 
0 0 1 

Rotation  Matrix:  QhatO 
1 0 0 
0 1 0 
0 0 1 

bias   ( in   body) :  bsO 
0 
0 
0 
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6.3 Case 1: X Axis Emphasis 

The  momentum,  torque  and power constraints for this case are specified below. The momen- 
tum  and  torque boxes are  somewhat  exaggerated in the X direction to  study  the effect of 
increased  requirements  along  the  x-axis. 
Momentum  Box x ,y , z  (Nms) 

X Y Z 
Max 5 1 2 
Min 0 -1 -2 

Torque Box x ,y ,z  (Nm) 

Max 2.0000e-002  4.0000e-003  8.0000e-003 
Min -2.0000e-002  -4.0000e-003  -8.0000e-003 

X Y 2 

Total  power allocation-pbar (watts) 
3.1500e+001 

The  iterative  algorithm gives a sequence of solutions  having  the  costs given below. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I t r n  Cost Max  Momentum  Max Torque Max Power 

Allocation: 8.0000e+000  2.0000e-002  3.1500e+001 

............................... 

""""""_"""""""""""""""""""""""" 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

2.0000e-002 
1.8756e-002 
1.6890e-002 
1.7284e-002 
1.7214e-002 
1.7122e-002 
1.7209e-002 
1.7292e-002 
1.7348e-002 
1.7385e-002 
1.7406e-002 
1.7413e-002 
1.7409e-002 
1.7398e-002 
1.7382e-002 
1.7362e-002 
1.7339e-002 
1.7317e-002 
1.7294e-002 
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19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Percent Skewness i s  24 

1.7272e-002 
1.7252e-002 
1.7232e-002 
1.7213e-002 
1.7196e-002 
1.7179e-002 
1.7164e-002 
1.7150e-002 
1.7137e-002 
1.7125e-002 
1.7114e-002 
1.7104e-002 

The final  optimized  solution is given below. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
FINAL OPTIMIZED VALUES 
RWA Alignment  Matrix: Ahat 

-8.2916e-001  -5.9268e-001 -8.639le-001 
4.2622e-001  7.5580e-002 -4.6093e-001 

-3.6170e-001  8.0188e-001 -2.0298e-001 

Skewness Matrix: Rhat 
1.0000e+000 2.3361e-001 5.9329e-001 

0 9.7233e-001 1.8084e-001 
0 0 7.8442e-001 

Rotation  Matrix:  Qhat 
-8.2916e-001  -4.1034e-001  -3.7962e-001 
4.2622e-001  -2.4670e-002  -9.0428e-001 

-3.6170e-001  9.1160e-001  -1.9535e-001 

momentum b i a s   ( i n  body) 
-2.2221e+000 
3.8240e-005 
4.1523e-005 

As expected,  the  strong  projections [-8.2916e-001,-5.9268e-001 -8.6391e-0011 in the first 
row of A^ indicate  that  the LC axis is favored by the  optimized wheel configuration. As an 
intuition check, the  optimized  momentum bias is seen to  be close to  the values [-2.5,0,0], 
which center the  momentum box about zero. 

The optimized  configuration is depicted  graphically  in  Figure  6.1. For visualization  pur- 
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poses, the wheels have been flipped so that each  wheel has  its largest  projection  in the positive 
octant,  i.e., 

8.2916e - 001 -5.9268e - 001  8.6391e - 001 
-4.2622e - 001 7.5580e - 002 4.6093e - 001 
3.6170e - 001 8.0188e - 001 2.0298e - 001 

(6.1) 

This is  possible  since each reaction wheel has  symmetric  behaviour  and  any  column of 
A^ can  be  changed  in sign without effecting the overall cost. However, Figure 6.1 is only for 
visualization  purposes,  and  may or may  not  correspond to  the  most  natural  polarities for 
mounting  the  reaction wheels  on the  actual  spacecraft. 

. . . .  . . . .  . 

n e  I 

1.5 

Figure 6.1: Optimized  Reaction  Wheel Orientation for Case 1 
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6.4 Case 2: Y Axis Emphasis 

The  momentum,  torque  and power constraints for this case are specified below, and corre- 
spond  to  requirements for the  Europa  orbiter based on  preliminary  modeling  results. The 
requirements  are  more  stringent  in  the Y axis  because it corresponds to  the  orbit  normal 
direction. 

Momentum  Box x ,  y , z (Nms) 

Max 3.4300e+000  3.8000e-003  6.9700e+000 
Min -2.2200e-001  -4.9800e+000  2.9400e+000 

X Y 2 

Torque Box x , y , z  (Nm) 

Max 1.7700e-003  1.7500e-003  1.4000e-003 
Min -1.7200e-003  -9.8600e-003  -4.8500e-004 

X Y Z 

Total  power allocation-pbar  (watts)  
3.1500e+001 

The  iterative  algorithm gives a sequence of solutions  having the costs given below. It can 
be seen that  the cost  may  occasionally  increase (i.e., only  in the  5th significant  figure) as the 
iterations progress. This  is  partly  due  to numerical roundoff errors  and  partly  due  to  the 
SQP step which is intentionally  not  run to full  completion  in the earlier iterations  to save on 
computation. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I t r n  Cost Max  Momentum  Max Torque Max Power 

Allocation: 8.0000e+000  2.0000e-002  3.1500e+001 

............................... 

............................... 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

9.8600e-003 
8.2358e-003 
7.5552e-003 
7.5472e-003 
7.2696e-003 
7.5636e-003 
7.5727e-003 
7.5934e-003 
7.6086e-003 
7.6252e-003 
7.5618e-003 
7.5439e-003 
7.5795e-003 
7.6012e-003 
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14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Percent 

3.0385e+000 
3.0385e+000 
3.0385e+000 
3.0385e+000 
3.0383e+000 
3.0382e+000 
3.0381e+000 
3.0380e+000 
3.0379e+000 
3.0378e+000 
3.0377e+000 
3.0376e+000 
3.0376e+000 
3.0375e+000 
3.0375e+000 
3.0374e+000 
3.0374e+000 

Skewness i s  

7.6195e-003 
7.6347e-003 
7.6430e-003 
7.6438e-003 
7.6405e-003 
7.6359e-003 
7.6306e-003 
7.6240e-003 
7.6181e-003 
7.6125e-003 
7.6074e-003 
7.6026e-003 
7.5980e-003 
7.5938e-003 
7.5898e-003 
7.5861e-003 
7.5826e-003 

The final optimized solution is given  below. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
FINAL OPTIMIZED VALUES 
RWA Alignment  Matrix: Ahat 

-5.8700e-001  -2.8918e-001  5.3041e-001 
-8.0345e-001  2.3296e-001  -8.0643e-001 
9.9452e-002  -9.2850e-001  -2.6143e-001 

Skewness Matrix: mat 
1.0000e+000  -1.0976e-001  3.1057e-001 

0 9.9396e-001 -6.4812e-002 
0 0 9.4834e-001 

Rotation  Matrix:  qhat 
-5.8700e-001  -3.5576e-001  7.2723e-001 
-8.0345e-001  1.4565e-001  -5.7728e-001 
9.9452e-002  -9.2316e-001  -3.7133e-001 

momentum bias ( i n  body) 
-1.4257e+000 

2.2116e+000 
-4.4042e+000 
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As expected,  the  strong  projections [-8.0345e-001,2.3296e-OO1,-8.0643e-O01] in the second 
row  of A^ indicate  that  the y axis  is favored by the optimized wheel configuration. As an  intu- 
ition check, the  optimized  momentum bias  is seen to be close to  the values [-1.6040,2.4881,- 
4.95501 which center the  momentum box about zero. 

The optimized  configuration is depicted  graphically  in  Figure 6.2. For this  purpose, wheels 
are flipped  such that each wheel has its largest  projection  in  the  positive  octant, i.e., 

5.8700e - 001 2.8918e - 001 -5.3041e - 001 
8.0345e - 001 -2.3296e - 001 8.0643e - 001 
-9.9452e - 002 9.2850e - 001 2.6143e - 001 1 (6.2) 

1.5 

1 

." 0.5 

N 
2 

0 

-0.5 
-0.5 - 

Optimized  Reaction  Wheel  Orientation 
, , . . . , . . , . , . .  . . . . . . " '  .:. 

. .  , . .. 

, , . . . , .  . ,  . . . .  

Figure 6.2: Optimized  Reaction  Wheel  Orientation for Case 2 
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6.5 Case 3: Z Axis Emphasis 

The  momentum,  torque  and power constraints for this case are specified below. The mo- 
mentum  and  torque boxes are  somewhat  exaggerated  in  the Z direction to  study  the effect 
of increased  requirements  along  the x-axis. 

Momentum Box x , y , Z  (NmS) 
X Y 2 

Max 1 2  5 
Min -1 -2 0 

Torque Box x , y , z  (Nm) 

Max 4.0000e-003  8.0000e-003  2.0000e-002 
Min -4.0000e-003  -8.0000e-003  -2.0000e-002 

X Y Z 

Total  power allocation-pbar  (watts) 
3.1500e+001 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I t r n  Cost Max  Momentum  Max Torque Max Power 

Allocation : 8.0000e+000  2.0000e-002  3.1500e+001 

................................. 

............................... 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

2.0000e-002 
1.8749e-002 
1.6900e-002 
1.7273e-002 
1.7212e-002 
1.7120e-002 
1.7213e-002 
1.7298e-002 
1.7353e-002 
1.7389e-002 
1.7408e-002 
1.7413e-002 
1.7408e-002 
1.7396e-002 
1.7379e-002 
1.7358e-002 
1.7335e-002 
1.7312e-002 
1.7290e-002 
1.7268e-002 
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20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

1.7247e-002 
1.7227e-002 
1.7208e-002 
1.7191e-002 
1.7175e-002 
1.7160e-002 
1.7146e-002 
1.7133e-002 
1.7121e-002 
1.7110e-002 
1.7100e-002 

Percent Skewness i s  24 

The final  optimized  solution is given below 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
FINAL  OPTIMIZED VALUES 
RWA Alignment  Matrix: Ahat 

-4.2652e-001  -7.4669e-002  4.6079e-001 
-3.6065e-001  8.0214e-001  -2.0385e-001 
-8.2946e-001  -5.9245e-001  -8.6378e-001 

Skewness Matrix: Rhat 
1.0000e+000 2.3397e-001 5.9346e-001 

0 9.7224e-001 1.7997e-001 
0 0 7.8448e-001 

Rotation  Matrix:  Qhat 
-4.2652e-001  2.5841e-002  9.0411e-001 
-3.6065e-001  9.1183e-001  -1.9620e-001 
-8.2946e-001  -4.0975e-001  -3.7959e-001 

momentum b i a s   ( i n  body) 
-3.7899e-005 
4.1385e-005 

-2.2221e+000 

As expected,  the  strong  projections [-8.2946e-001,-5.92, 11 in the  thin 1 
row of A^ indicate  that  the z axis is favored by the  optimized wheel configuration. As an 
intuition check, the  optimized  momentum  bias is seen to  be close to  the values [O,O,-2.51 
which center  the  momentum box about zero. 

The optimized  configuration is depicted  graphically  in  Figure  6.3. For this  purpose, wheels 
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are flipped  such that each wheel has  its largest  projection  in  the  positive  octant,  i.e., 

.4.2652e - 001 -7.4669e - 002 -4.6079e - 001 
3.6065e - 001 8.0214e - 001 2.0385e - 001 
8.2946e - 001 -5.9245e - 001 8.6378e - 001 I (6.3) 

As a check on the  algorithm,  this Case 3 has been intentionally designed to  be identical 
to Case 1 under a relabeling of the axes. It can  be seen by comparing  Case 3 to Case 1 that 
(within  numerical  error)  the  optimized  solutions  agree. 

Optimized  Reaction  Wheel  Orientation 

Y Axis 

Figure 6.3: Optimized  Reaction  Wheel  Orientation for Case 3 
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7 CONCLUSIONS 

This  report  has developed an  optimization-based  approach to orienting  three  reaction wheels 
on an  orbiting  spacecraft.  The  main  consideration  has been to find an  orientation  matrix 
which minimizes  mass and power of the required  reaction wheels, while allowing a specified 
maximum  amount of time between momentum  dumps. 

The  optimization is nonlinear  in  both  the cost and  constraints. A QR factorization of the 
wheel-to-body transformation allows separate  optimization over the  rotation Q and skewness 
R of the  reaction wheel frame. The initial  momentum bias b is also  optimized for momentum 
management  purposes.  The  optimization over the Q matrix is performed  analytically, while 
the R, b parameters  are  optimized using  Sequential  Quadratic  Programming  (SQP). 

Several  case studies were given to  demonstrate convergence and  performance of the 
method,  including  an  application  to  the NASA/JPL’s emerging Europa  orbiter mission. In 
each  case, the per-wheel requirements  are seen to be  systematically  reduced  with  continued 
iteration of the  algorithm.  The final  optimized  orientations  appear  intuitively  reasonable, 
tending  to favor the  body  axis having the  most  stringent  requirements. 

The present  study considers the  orientation of three  reaction wheels. However, the  Europa 
orbiter is intended  to have a fourth wheel (powered off) which is to  be used as a backup in 
case of any single wheel failure. This gives rise to a more  complex orientation  problem which 
must  take  into  account  the  orientation of the  fourth wheel so as to meet  requirements  in 
each of the  three failed configurations. Such a problem will be  considered as part of a future 
study. 
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* 

A APPENDIX A: Details Behind Step 1 of Algorithm 

This  appendix discusses Step 1 of the  algorithm in Section 5.2 where the cost C(b, R, 6) 
in (5.5)(5.8) is optimized  with  respect to b and R using  Sequential  Quadratic  Programming 
(SQP) * 

From (5.2), R E has  the form of an  upper  triangular  matrix  with  unit  norm columns. 
As discussed  in  Section 5.1, the  matrix R will be  parametrized by the vector of parameters 
r = [rl, r2, r3IT E R3 as follows, 

R ( r )  = 

subject to  the linear  constraints, 

where as before we have  defined, 

1 2  [ i ]  
By inspection,  the cost C(b, R, Q )  in (5.5) can  be factorized as, 

C(b, R, Q )  = y(b, ~ ) ~ y ( b ,  r )  

where the vector y E R6nf3 is given by, 

- ;b 
- 

; (b  + R-lQTh*(l)) 

r )  = ' ( b  c + R-lQTh*(n)) 
LR-'QT7* 7 (1) 

- 7  I-R-lQT7*(n) - 
The vector y is linear  in b but  nonlinear in r (i.e.,  through E'), and  the  dependence of y 
on Q has been dropped for notational simplicity. In  order to develop an SQP approach, it 
will be necessary to  expand y(b, r )  in a Taylor  expansion.  The  expansion of y(b, r )  requires 
derivatives of the  quantity, 

R - ~ Q ~ X  

where the vector x E R3 is  considered arbitrary for now. Expanding (A.6) to  first order  with 
respect to  the  perturbation r = r^ + 6r gives, 
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= E"QTx 

where we have  defined, 

R- = R-l(r)  - l a  

i=l 

- H(?, x)& 

( A 4  

(A.9) 

(A.lO) 

(A.ll)  

(A.12) 

(A.13) 

(A.14) 

(A.15) 

Expanding y(b, r )  in (A.5)  to first  order about b = 0, r = ? and  making use of (A.lO) gives, 

y(b , r )  N n(?) + Ad(?) L I  
where, 

M(7)  [- dY aY ] = 
db' 

(A.16) 

(A.17) 
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n(?) = y(O,?) = A 

0 
t k l Q T h *  (1) 

$R-'QTh*(n) 
LRi-'QT7* 7 (1) 

L R " Q T 7 * ( n )  7 

With these  definitions,  the  cost C in (A.4) can  be  written  as, 

(A.18) 

(A.19) 

Based  on this  factorization,  Step 1 of the  algorithm  can  be broken down into  the following 
sequence of substeps: 

DETAILS OF STEP 1 

Step 1A: Initialize 

k = O  

?k = 0 

Step 1B: Solve Quadratic  Programming Problem 

subject to  the  linear-  constraints, 

- 1 - ? k  5 6 r k  5 1 - ? k  

Step 1C: Relinearize 

?k+1 = ?k + 6Pk 

k t k + 1  

Go back to  Step 1B and  repeat  until  solution converges. 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

(A.25) 

Step 1B defines a quadratic  programming  (QP) problem which is readily solved (globally) 
with  available  software. The problem is then relinearized  in Step 1C and  an new Q P  is solved. 
This sequence of quadratic  subproblems defines the  SQP approach [6]. 
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A simple  rule for adjusting q k  is to reduce it by 5 percent  each time  the cost  increment 
in successive iterations changes  sign,  i.e., 

where c k  denotes  the QP cost at iteration IC. This reduces the  step size when the cost starts 
to  oscillate  between two values (found to be a common steady-state  condition for this SQP 
iteration). More elaborate  step size control  methods  are  also  possible  rcitegillmw, but were 
not  found necessary  in this  study. 

As defined in Step 1A above, the  initial  condition r^l, = 0 starts  the SQP from  scratch 
each time. However, some computation  can  be saved by replacing this  initial  condition  with 
the  best  solution found  from the previous Step 1 call, i.e., by continuing to  iterate r k  where it 
left off previously. This modification was used in the final implementation of the  algorithm. 
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B APPENDIX B: Details Behind Step 3 of Algorithm 

This  appendix discusses Step 3 of the  algorithm in  Section 5.2 where the cost C(k"QTb*, f i ,  Q )  
in (5.5) is  optimized  with  respect to  the orthogonal  matrix Q. The cost  in Step 3 in conve- 
niently put  into  the following form, 

where, 
A 

b* 2 +Ah*( l )  b* +Ah*(n) ~ * ( 1 )  ~ * ( n )  
h 

x = [-, 7 -1 
C  C  C 

7 " ' 9  , ' " 7  

Y 7 

Here, I [MI I f  denotes  the Frobenious  norm of a given matrix M [7], 

and  corresponds  simply  to  the  sum of squares of the elements of M .  The  optimization of 
(B. l )  over choice of Q can  then  be solved analytically  using  the following result. 

THEOREM B. l  (Frobenious Norm Optimization) Let  X E Rmxn, Y E Rexm be ar- 
bitrary  but  non-zero  matrices.  Consider  the  following cost function  involving  the  Frobenious 
norm, 

C(Q) = IIYQTXI$ = T r { X T Q Y T Y Q T X }  (B.5) 

where  the  matrix Q E Rmxm is  constrained  to be orthogonal,  i.e., 

Let P, and Py be orthogonal  matrices obtained from  the  following  eigenvector  decompositions, 

YTY = PyAyP,' (B.7) 

X X T  = P,A,PT (B.8) 

Ax = diag{X,1, ..., Axm} (B.9) 

A, = diag{ X,1, .. . , Aym} (B.lO) 

where  the  eigenvalues in A, and A, are each assumed  to be ordered in a  monotonically  non- 
increasing  sequence, i .  e., 

Xz1 2 X22 2 .-- 2 Xxm 2 0 (B . l l )  

Xy1 2 Xy2 2 0 . -  2 x,, 2 0 (B.12) 
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Then a choice of Q which globally maximizes C(Q)  is  given by, 
- 
Q = P,P,’ 

and  a  choice of Q which globally minimizes C(Q)  is  given by, 

- Q = P,JPy’ 

(B.13) 

(B.14) 

where  J is  the reverse  identity, 

(B.15) 

rn 

The proof of Theorem B.l  will require  some  preliminary  definitions and  results. 

Permutation  Matrices [l] A permutation  matrix P of order m is an m x m matrix possessing 
exactly a single  element of value “1” in each row and  column,  with  all  other  elements zero. 
There  are known to be  exactly m! permutation  matrices of any given order m. rn 

Doubly  Stochastic  Matrices [l] A square  matrix A E Rmxm is doubly stochastic if its elements 
A = {ai j}  satisfy the following conditions, 

aij 2 0 (B.16) 

(B.17) 
i = l  j = 1  

Sirkh~fl ’s   Theorem [l][3] Any doubly  stochastic  matrix A E Rmxm can  be  written as a 
convex combination of permutation  matrices, i.e., 

m! 

k=l 

m.! 

(B.18) 

(B.19) 

where {Pk},  IC = 1, ..., m! denotes  the  set of permutation  matrices of order m. rn 

Hardy’s  Theorem [Z] Let { b l ,  ..., b,} and { q ,  ..., Cm} be  monotonically  nonincreasing se- 
quences of numbers. Associate  with each i = 1, ..., m a distinct  index j to  define the  mapping 
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C 

between indices j ( i ) .  Then  the sum-of-products  cost bicj(i) is maximized  when j ( i )  = i 
for all i ,  and minimized when j ( i )  = rn - i + 1 for all i. 

It is necessary to first prove the following result. 

LEMMA B.l (Bounds  on  an  inner  product) Consider  vectors b = [b l ,  ..., bmIT and [cl ,  ..., c,IT 
where { bl , . . . , b,} and { cl, . . . , cm} are monotonically  nonincreasing  sequences of numbers.  Let 
A E Rmxm be a  doubly  stochastic  matrix.  Then  the  inner  product  bTAc  can be bounded above 
and below as follows, 

bT J c  5 bTAc 5 bTc (B.20) 

where J is  the  reverse  identity  given b y  (B.15). Furthermore,  the  lower bound is achieved 
with  equality by choosing A = J ,  and  the  upper bound is achieved with  equality b y  choosing 
A = I .  

Proof: Using  Birkhoff’s  Theorem (B.18)(B.19),  the  matrix A in  the expression bTAc can  be 
replaced by the convex combination of permutation  matrices  (B.18)  to give, 

m! 

(B.21) 
k=l 

Without loss of generality, we can define the first two permutation  matrices  as, 

PI = I ;  P2 = J (B.22) 

It is noted  that each inner-product  term bTPkc appearing in the  summation of (B.21)  can 
be  interpreted as a sum-of-products of elements of b with elements of c, as reordered by 
multiplication  with  the  permutation  matrix Pk. Accordingly, by Hardy’s  theorem,  the  largest 
of the  terms {bTPkc}& is given by using the  identity  permutation P k  = = I .  Hence, an 
upper  bound on the convex combination  (B.21)  is  found by putting  all of the weight into  the 
first term  (i.e. w1 = 1, wi = O f o r  i # 1) to give, 

(B.23) 

This  establishes  the  upper  bound in (B.20).  Note  that  this  upper  bound is achieved with 
equality when A = I .  

Similarly, by Hardy’s  theorem,  the  smallest of the  inner-product  terms {bTPkc}F!, is 
given by using  the reverse-ordering permutation p k  = P2 = J .  Hence, a lower bound  on  the 
convex combination  (B.21) is found by putting  all of the weight into  the second term (i.e. 
w2 = 1, wi = 0 f o r  i # 2) to  give, 

(B.24) 
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This  establishes  the lower bound  in  (B.20). Note that  this lower bound is achieved with 
equality when A = J .  

At this  point  Theorem B.l  can  be proved. The basic  idea is to first show that  the cost 
C(Q)  has  the special  inner product form bTAc, as  treated in  Lemma B.l. Second, it is shown 
that  the  upper  and lower bounds on the cost  ensured by result  (B.20) of Lemma  B.l,  are 
achieved with  equality for the  optimal choices of Q given by (B.13) and  (B.14) of Theorem 
B.l .  As desired,  this implies that  they  are in  fact  global  extrema. 

Proof of Theorem B.l:  Define the cost  function as, 

C(Q) = IIYQTXI/; = Tr{XTQYTYQTX}  (B.25) 

Rearranging using the eigenvalue decompositions  (B.7)  (B.8)  and  standard  trace  identities 
gives, 

C(Q)  = Tr{QYTYQTXXT}  (B.26) 

= Tr{AyPy Q pxAzPTQPy} T T  (B.28) 

= Tr{AyLTAxL} (B.29) 

= Tr{A$A$LTA!A!L} (B.30) 

= Tr{A$LTA!A!LAj} (B.31) 

= I I A ~ L A ~ I I ;  (B.32) 

m m , . ,  , ?  m m  
(B.33) 

= XZAX, (B.34) 

where the following quantities have been defined, 
A L = PTQPy = {e ,}  (B.35) 

AX = [ x x l ,  e . - ,  X X ~ I ~  E R" (B.36) 

~y = [ x y l ,  ~ y m ] ~  E R" (B.37) 
2 (B.38) A = L 8 L = {aij = l i j }  

Equation  (B.29) follows from  (B.28) by the definition of the orthogonal  matrix L in  (B.35); 
equation  (B.33) follows from  the  fact  that a squared  Frobenious  norm of a matrix is the sum- 
of-squares its elements;  and  equation  (B.34) follows  by vectorizing equation  (B.33), where 
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the symbol @I denotes  the  Hadamard  product (i.e., the element-by-element multiplication of 
two matrices). 

Since L is  an  orthogonal  matrix  (i.e., LTL = LLT = I )  each of its rows and  columns have 
unit  norm so that  the  matrix A in  (B.38)  is  doubly  stochastic.  In  addition, the elements of 
vectors X,, X, are  ordered from  highest to lowest, so that  the result  (B.20) of Lemma  B.1  can 
be  applied to  the inner  product  (B.34)  to give, 

The lower bound in  (B.39) is achieved with  equality by the choice A = J ,  which using (B.38) 
gives 

L = J!i (B.40) 

where J f  denotes  any  Hadamard  square  root of the  matrix J (i.e.,  any J ;  such that J = 
J f  @I J i ) .  Substituting  (B.40)  into  (B.35),  and solving for Q gives the global minimum  as, 

Global Minimum 

- Q = P,JfPF (B.41) 

For  simplicity  one  can choose (non-uniquely) J f  = J which gives (B.14)  as  desired. However, 
J i  can  alternatively  be chosen as  one of 2" possible Hadamard  roots of J formed by changing 
the sign  on any  combination of 1's in J .  Any one of these choices gives a alternative global 
maximum. 

The  upper  bound in  (B.39) is achieved with  equality  with  the choice A = I which using 
(B .38) gives, 

1 L = IZ (B.42) 

where I f  denotes  any  Hadamard  square  root of the  identity  matrix I .  Substituting  (B.42) 
into  (B.35)  and solving for Q gives the global  maximum as, 

Global Maximum 

- 
Q = P,I fPr (B.43) 

For  simplicity  one  can choose (non-uniquely) I f  = I which gives (B.13)  as  desired. However, 
I f  can  alternatively  be chosen as one of 2" possible Hadamard  roots of I formed by changing 
the sign  on any  combination of 1's in the  identity I .  Any one of these choices gives an 
alternative  global  maximum. 
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C APPENDIX C :  Alternate Derivation of Optimal Q 

This  appendix gives an  alternate  derivation of the formulas for the  optimal  and Q in 
equations  (B.13)(B.14) of Theorem B.l.  The derivation is restricted to Q of dimension 3; 3, 
and is included  only for pedagogical  reasons,  since it gave the  author his first insights  into  the 
problem at hand.  The  derivation is simple and requires  only  familiar  concepts  from  calculus 
which optimize a cost by taking a derivative and  setting it equal to zero. However, it would 
be wrong to  interpret  this  derivation  as  an  alternative proof of the  claims in Theorem B.l ,  
which treats Q of arbitrary size and addresses  deeper  properties  related to global  optimality. 

Define the cost  function  as, 

C ( Q )  = Tr{XTQYTYQTX}  

Let the  orthogonal  matrix Q be  written  as a small  perturbation  to  the  orthogonal  matrix Qo 
as follows, 

Q = Qo + ESQ 4I ( I  - ~0')Qo (C.2) 

SQ 2 -0"QO (C-3) 
where we have defined, 

0 -oz oy 
(C.4) 

Note that  the skew-symmetry of the  small  perturbation €0' in (C.2) ensures that Q will be 
orthogonal if Qo is. Define the  gradient of C with  respect to  the orthogonal  matrix Q in  the 
direction SQ, evaluated at Qo as, 

Evaluating C(Qo + E ~ Q )  gives, 

C(QO + E S Q )  = T r { X T ( I  - EBX)QoYTYQr(I + d x ) X }  

= Tr{XTQoYTYQTX} 

+ ~ T ~ { X T Q o Y T Y Q ~ e x X }  - ETr{XTOXQo 

- c2Tr{XT9xQOYTYQ;ft?xX} 

Differentiating  and  taking  the  limit gives, 

,YTYQ;J 

= Tr{XTQoYTYQTOxX} - T r { X T B X Q o Y T Y Q ~ X }  

= Tr{OX (XXTQoYTYQT - QoYTYQ:XXT)} 
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A  necessary  condition for a local  extremum is found by setting  the  gradient (C.12) to  zero 
(cf., [9]) to give, 

Tr{OXG} = 0 for all 8 E R3 (C.13) 

where, 
G = X X ~ Q ~ Y ~ Y Q ; ~  - Q ~ Y ~ Y Q ; ~ X X ~  (C.14) 

As a necessary  condition for a local extremum,  it  is desired for (C.13) to be  true for all choices 
of the  perturbation  direction 8". Since both 8" and G are skew-symmetric  (i.e., ( ~ 9 " ) ~  = -8" 
and G = -GT) the choice 8" = GT is valid. With  this choice, the necessary condition  (C.13) 
becomes, 

Tr{O"G} = Tr{GTG} = 0 (C.15) 

which is true if and only if 
G=O 

Hence (C.16) is an equivalent necessary condition for a local extremum. 

Let Qo be chosen as, 
Qo = PJ',' 

(C.16) 

(C.17) 

Then one can verify that Qo is a local extremum by substituting (C.17) into G and verifying 
that  the necessary  condition  (C.16)  holds. Specifically, 

G = XXTQoYTYQ;f - QoYTYQ;fXXT (C.18) 

= PXAJ',TQoPyA,P, Qo - Q O P ~ A ~ P T Q ; ~ P ~ A , P T  

= P x ~ , P ~ ( P , P ~ ) P y A , P ~ ( P , P ~ )  - ( P x P ~ ) P y A , P ~ ( P y P ~ ) P x A x P ~  (C.20) 

T T  (C.19) 

= P~A,A,P,T - P,A,A,P,T = o (C.21) 

Here the  last  step follows from the  fact  that AxAy = AyAx since they  are  all  diagonal  matrices. 
Accordingly, &o in  (C.17) is a local extremum for the  problem.  The cost  associated  with  this 
local extremum is calculated  as, 

C(Q0) = Tr{XTQoYTYQ;fX} (C.22) 

= Tr{QoYTYQ;fXXT} (C.23) 

= T r { P x P ~ P y A y P ~ P y P ~ P z A x P ~ }  (C.24) 

= Tr(P,h,A,PT) (C.25) 

= Tr{A,A,P,TP,) (C.26) 

= Tr{A,A,} (C.27) 

Interestingly, the cost  in  (C.27) depends  on how the  roots  are  ordered in A, and A,. 
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The largest  local  extremum  occurs when the  roots  are  ordered  to  maximize  the cost 
expression (C.27). A simple  method to  do  this  (i.e., by Hardy’s  theorem) is to order the 
eigenvalues in both A, and A, from  highest to lowest. This is the  starting  assumption in 
Theorem B.l  so the  optimal Q is given directly by (C.17) which agrees  with  in (B.13). 

Likewise, the smallest  local  extremum  occurs when the  roots  are  ordered to  minimize the 
cost  expression (C.27). A simple method  to  do  this is to order the eigenvalues in A, from 
highest to  lowest, and  the eigenvalues of Ay from lowest to highest. Because the  starting 
assumption in Theorem B.l  orders the  roots of Ag from  highest to lowest, they  must  be 
flipped around  to give a minimizing  cost. This gives the  additional  factor of J seen in  the 
formula (B.13) for - Q,  compared to (C.17)  above. 
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